The PicklingTools Library:
A Toolkit for Combining C++ and
Python

by Richard T. Saunders
for PyCon 2010 in Atlanta

A Motivating History and Tutorial



What are the PicklingTools?

* The PicklingTools are an Open Source library of

Python code and C++ code
— allows developers to build systems out of C++ parts

and Python parts, and have those parts communicate
— or
— A collection of socket and file tools to allow C++ and
Python to exchange Python Dictionaries



Philosophy: Python Dictionaries
are Currency of the PicklingTools

* All interactions between C++ and Python are via

Pvyvthon Dictionaries
- {'retries':100, 'request':'ping', 'time':5.5}

— Python Dictionaries stored in files, can read/write from
either Python or C++

— Python Dictionaries flow across sockets, can read/write
from either Python or C++

* The toolset 1s called the PicklingTools because

when Python Dictionaries are serialized, they are
said to be pickled



Overview of Tools in PicklingTools

* TCP/IP Servers and Clients: C++ and Python

— called (resp.) MidasServer and MidasTalker
— you DO NOT need Midas (name 1s historic remnant)

— ... but CAN communicate with legacy Midas if need to

* UDP Servers and clients: C++ and Python

— called (resp.) MidasYeller and MidasListener
— again, you DO NOT need Midas (names historic)

* Read files w/many represent.: C++ and Python

— Textual and Binary Serialized Python Dictionaries



Overview of Implementation of
PicklingTools

* Python code: just wrappers to built-ins (no

extension modules, just raw Python!)
— Python Dictionaries: built-in, easy to manipulate
— Socket code: import socket
— Serialization code: import cPickle

* C++ code: goal 1s to feel like the Python side
— Python Dictionaries: emulated though OpenContainers
— Socket code: available on UN*X systems
— Serialization code: reverse engineered Python Pickling
Protocol O (7-bit clean) and 2 (binary), also text tables



C++ Applicalions

Traditinral View: Pickling

Legacy M2k Application

Togls allows olianis (K-
NMidas and nthars) o 1elk to

|23acy sonlications,

Client Server
MidasTalker & T = OpalPythonDasmon
”':”“”f,.fﬁ" ] .f
S X-Midas Primitives P /
i /
-’_..—F"-r
L,‘_.-'"' I!;: L Dll-ﬂ'l-ﬂhlﬂﬂ -
H-ldu'l’amgr il Ho el il & 'i,‘

Raw Python (no X-Midas}

Cliont

MicdasTalker

Pylhon Ap'pli:atiﬂns

=
e

 a

e e

Cliant

MidasTalker

l_.-..-[_-—-_-—h el ———— \\“\'
| | Texl | LEiniw |
'\-\.‘_-___ _.:_.-r"'f

e

KEY
@

Soghet

ReadiVnlz s—




C++ Syslems Evofutionary View: MZk Systems
Fickl rg Topls allows [l
interoperebility bebween
gveteme vaitbear in O+,
Server Python, or Midaz 2k Server

MidasServer
(Raw C++or OpalPythanDaesmon
X-Midas Prim)

L

Client - _ Client
MidasTalker [T“t |

(Raw C++ or OpaiPythonSocketMsg
X-Midas Prim) [ fﬂ""“ﬂ "

PyTan

P 1.1I:I Honanies

RosdAYAlE Flcs
Fecinm All Syalems

MidasServer
(Python or XMPY)

EL!EI'I[

~ MidasTalker
[Python or XMPY)

Fythan Syslems




Legacy Systems use PicklingTools

* 8 years of my life.. summed up 1n one slide
— GALACTUS: thousands of installs

* one 1nstall uses entire machine

— SILVER SURFER: 378000 lines of Python/C++ code

* runs on 400+ quad-code machines

- NOVA: 406000 lines of Python/C++ code

* runs on 120+ quad-core machine

— see paper on history on web site



Spring 2008: Software Engineering
class at the University of Arizona

* FULL CLASS PROJECT

®* Arkham Horror:

— complex table-top game
* complicated rule-set

— 100s of cards, pieces
* each card subtly changes the rules of the game
* Cries out for computerization
— networking ... so everyone doesn't have to sit at table
— have computer handle rules, upkeep






Arkham Horror Architecture

* Model-View-Controller
— Game engine handles and keeps all state

* player locations, health, monster locations, etc.
* implemented as a MidasServer
— Players sit at separate computers, play over network

® Client shows current state of the board
* implemented as a MidasTalker



Rules Rules Rules

* So many cards, so many subtle rules ...

* Game Engine 1s a “Prolog-like” game engine
— rules encoded as Python Dictionaries
— each card 1s a set of rules
* card processed by engine when card 1s “revealed”

— avoids hard-coding all logic 1n game
* game is in the cards

— makes it easy to add “expansions” (currently 6)
* just add new bunch of tables with the new “rules”



#5 . il W e s
il e A Winlypaped Hatmpr
i A x Al ook e sk
e e e el B an o flaarwiih mimmsl;
|'|J.r1L"|F1_I'|‘|J'i||'i | - o L
sl Lpkkr w18 ;
ligtrrmn ey frll o d i :
""H.-:"'j-"fil'::“'“ b b e ek ming
5aa i LH AT RETTH

o Tl e

ricyl

]

Fryeirzi  Fenbemom
Eeig=-Sq1 M AT

Sttt ol Baidlo
LR TP
Heii 18l - bolia w0 aen
W w1 e woile 1A

w el i (e HEE

gl i-m't_ll.-l_.rl
Al

Pt ey geg oo e
okt e B | o3 chust i
e Sk il |hie dfadh d
el dier dimiae

Monterey
Jack

the Archaeclogist

X Sanity

rZ‘_.'-Z!'l:.ml]:l_n.al

Bomes Curoitie Shivppe Archaeclogy
Fixed Pooagas]ona YWhmewer komicesy ek devss a cad
ST 1 Clee Taken, 2 Common from Ilm L|'l."u.|_|:||.' leem deck, he dranws
[tems (Bull Whip, 3% Revalver) Giu St e, gRooRes COB N i
carcky. and retirms the ocher o e
BHardom Poessesslans: Liberais o b Ulninpues Dlom Jouk

2 L e Fecrns

Foruis



Sample Encoding (pretty print)

'Monster' : 'The One Who Cannot Be Named',
'Attributes': |
'Physical Resistance'’',
'Magical Resistance'
1,
'Defense': -3,
'DoomTrack': 14,
"Attack' : {
'Will':+2,
'Frequency': [ 'perturn', -1]
o

'Picture' : 'unnamed. jpg’



A MidasTalker is the Client

from midastalker import * # raw Python
mt = MidasTalker(“d1380”, 8888, SERIALIZE PO)

mt .open() # Connect!

# Send a request to server

request = { 'PING': { 'timeout': 5.0 } }

mt .send(request)

# Receive response back, wait up-to 4 seconds
response = mt.recv(4.0) # Returns None if

# no response in 4

if response==None : error out()



A MidasTalker is the Client (Adv.)

from midastalker import *
mt = MidasTalker(“d1380”, 8888, SERIALIZE PO)

while 1:
try :
mt.open() # Can we connect?
except
print '... retry to connect in 5 seconds'’

time.sleep(5)

while 1:
try :
request = CreateRequest() # Some user fun
mt .send(request)
except

print ' ... server went away? Retry to connect'



MidasTalker examples

* Examples of how to use the MidasTalker litter the

baseline:
— PicklingTools104/Python/

* midastalker_ex.py # easy to read and understand, fragile
* midastalker_ex2.py # harder to read, robust with error hand.

— PicklingTools104/C++/midastalker_ex.cc
* midastalker_ex.cc # as above, easy but fragile
* midastalker ex2.cc # as above, hard but robust

— PicklingTools104/Xm/ptools104/host

* xmclient.cc # How to use in X-Midas framework



Problem: How do we emulate
Dynamic Types in C++?

* Consider in Python (dynamically typed language):

1
“hello”
b # okay

a
b
a

C++ statically typed: types known at compile time

int a 1
string b “hello”;

a = b; // Compiler error! Different types!

” we



Solution: Use Val to represent

Dynamic Types in C++

* Val is the C++ type that means “dynamic typing”
* C++ Val: heterogeneous container of any basic

type in C++
Val a = 1; // int
val b = “hello”; // string

a =Db; // Okay, a & b same type

Val 1s essentially a union type for all basic C++ types:
int_1, int_ul, int 2, int_u2, int_4, int_u4, int_8, int_ud
real_4, real_§&, complex_8, complex_16, None, Tab



Val Constructor for all Basic Types

vVal
vVal
Val
vVal
Val
Val
Val
Val

vl
V2
v3
v4
v5
V6
v/
v 8

“hello”; //
1.0; //
1.0f; //
complex 8(1,2); //
None; //
Tab(); // empty
17; //
int u2(256); //

string
real 8
real 4
complex
none
table
int

int u2

Note, to avoid compiler errors, ALL basic types accounted for

(especially ints) otherwise, overload ambiguities!!



How does Val handle all types?

* Overload the constructor on all basic types

class Val {
Val (int 1 v): tag('s') { u.s = v; }
Val (int 2 v): tag('i') { u.i = v; }
Val (int 4 v): tag('l') { u.l = v; }

}i

Val
vVal

Val

(const stringé& s);
(const Tab& t);

(real 4 v): tag('f') { u.f = v;}



Getting Values Out

® Just ask for a value, and converts to static type of
variable you are using

Val v = 17; // v contains int

int 4 14 = 0;

id = v; // gets int 4 out!
// or

int 4 mm = v; // more direct

Just get the value you want out of the Val!



More Getting Values Out...

val v = 17;
int ué4 14 =
real 8 r8 =
real 4 rd =

size_t S

// convert out to 17ul
// Convert out to 17.0
// convert out to 17.0f
// convert to size t(17)

Converts the value inside the Val to the static type requested
*#%AS C/C++ would do the conversion without Val in mix***

[Principle of Least Surprise]

val vv
int ii

Val uu
int_ul

255.8;

= VV;

// a real 8
// truncates to 255 as C would!

// an int
// makes into 255 as C would!



How Do You Implement Casting?

®* C++ has a (rarely) used feature: conversion
operators

class Val {
operator int 1(); // someone asks for int 1
operator int 2();
operator int 4¢();

operator real 4();
b7

Conversion from Val to int_1 causes C++ to call operator int_1 method



Conversion Operators in Detail

* When C++ sees code like:

val v = ...
int ul 11 = v;

It converts this (automatically) to:

Val v = ...
int ul i1l(v.operator int ul());



Construction and Conversions

* These two features of C++ (overloading
constructors and conversion operators) make it
easy to manipulate dynamic values in C++!!

# Python // C++

v = 17 vVal v = 17;
f = float(v) float £ = v;
v = “hello” v = “hello”;



Python Dictionaries in C++: Tab

® The Tab is the C++ “Python Dictionary”
— keys of the table are Val (limited to “hashable” keys)
— values of the table are Val (unlimited, other dicts)

# Python
t={ 'a': 1, 'b': 2.1, 3: 'three' }
print t['a'] # LOOKUP, returns 1

t['new'] = 17 # INSERTION, new key-value

// C++

Tab t = “{'a':1, 'b': 2.1, 3:'three' }”;
cout << t[*”a”]; // LOOKUP, returns 1
t[“new”] = 17; // INSERTION, new key-value



Tab Literals

®* When constructing a Tab, use a string to specity
the equivalent Python literal

Tab t = “{ 'a': 1, 'b': None, 'c':[1,2,3]}";

Small parser for Python literals built-in OpenContainers
Pros: Small footprint, written as C++,
no need to embed Python interpreter
Cons: Not standard parser, nor “full Python evaluation™



C++ OpenContainers has “Simple”
Python Dictionary Parser

// C++: Read a table from a file
Tab t;
ReadTabFromFile(“init.table”, t);

# Python: Read a table from a file
t = eval(file(”init.table”).read())

Both can read a Python Dictionary from a file.



Lookups with Tab

* Lookup returns the type Val&

Tab + = 11{|a|:1, |b|:2}";

Val& vref = t[”a”]; // A reference to the Val

vref = 17; // .. changes both t and vref
Val copy = t["”a”]; // A copy of the Val

copy = 100; // .. only changes copy



Lookups with Tab

* Lookup returns the type Val&

Tab + = 11{|a|:1, |b|:2}";

Val& vref = t[”a”]; // A reference to the Val
vref = 17; // .. changes both t and vref

Val copy = t["”a”]; // A copy of the Val
copy = 100; // .. only changes copy

Like C++, references only valid as long as entity exists



Cascading
Lookups, Changes and Inserts

# Python

t={ 'a's: {'b': 1.1} }

print t['a']['b'] # LOOKUP, 1.1

t['a']['b'] = 7 # CHANGES 1.1 -> 7
t['a']['new'] = 100 # INSERT 'new':100 into a

// C++

Tab t = “{ 'a': {'b': 1.1} }";

cout << t[“a”][“b"]; // LOOKUP, 1.1
t[“a”]1[“b"] = T; // CHANGES 1.1 -> 7
t[“”a”][“new”] = 100; // INSERT 'new':100

//*** The C++ works because t[key] returns Vals



Arr is the Python List

# Python
a=[1, 2.2, 'three']
print af[l] # LOOKUP via index: 2.2

a.append(400) # APPPEND

// C++

Arr a = “[1, 2.2, 'three']l”; // Use literal
cout << a[l]; // LOOKUP via index: 2.2
a.append(400) // APPEND



Why Val/Tab/Arr?

* Three letters: easy to type
— since Python doesn't even HAVE to specity type

* VALue, TABles, ARRays
® Val is to remind you that, by default, all things are
copied by value (deep-copy!)
— There are Proxy Values that are ret-counted and
behave JUST LIKE Python (Advanced topic, see FAQ)

- Val v = new Tab(“{'a': 1}"”); Val shared = v;



C++ Libraries feel like Python!

* Design goals of the PicklingTools

— Make the Python and C++ interfaces
* simple (not too hard to use)

* similar (both Python and C++ look the same)
— Note both C++ and Python MidasTalker same BY DESIGN!! (as are
the MidasServer, MidasListener, MidasListener)

— Make C++ experience with Python Dictionaries as

pleasant as the Python Experience
* considered BOOST any type, not easy enough to use



MidasTalker in C++ (like Python)

#include “midastalker.h”
MidasTalker mt(”“d1380”, 8888, SERIALIZE PO);

mt.open(); // connect!

// Send request to server

Val request = Tab(“{'PING': {'timeout':5.0 }}");
mt .send(request);

// Receive response back, wait up-to 4 seconds
Val response = mt.recv(4.0); // Returns None if

// no resp in 4

if (response==None) error out(); // No response?



Documentation

* Website: http://www.picklingtools.com
— FAQ document
— User's Guide
— Paper (history and high-level overview) from New

Application Areas in Open Source Software
* “Complex Software Systems in Legacy and Modern
Environments: A Case Study of the PicklingTools Library”
* slides from talk available as well



Demo ...



