
Complex Software Systems in Legacy and Modern Environments:
A Case Study of the PicklingTools Library

Richard T. Saunders
Rincon Research Corporation

Tucson, AZ 85711 USA
rts@rincon.com

Abstract

Most complex software systems are written in many
languages and utilize multiple frameworks. The Pick-
lingTools is an open-source collection of libraries (see
the website athttp://www.picklingtools.com) allowing
multiple systems (both modern and legacy) to commu-
nicate. The original purpose of the PicklingTools was
to allow users to communicate with a legacy product
(written with a monolithic legacy framework called
Midas 2k) without needing the legacy framework. Since
then, the toolset has evolved to become a standalone
framework for building applications in the C++ and
Python programming languages. This case-study ex-
plores how the PicklingTools has been used to evolve
existing legacy applications, exploit existing legacy
installations, and author new modern applications.

1. Introduction

Many modern software systems, of any complexity,
are written using multiple frameworks and multiple lan-
guages. For example,Mercurial[1] is an open-source,
distributed version control system written mostly in
Python, with key routines written in C for speed (the
diff portion). Graphical User Interfaces (GUIs) for Mer-
curial are abundant and written in many different lan-
guages/frameworks: pyGTK, Tcl/Tk, Qt4, MacOS[1].

This paper is a case study of the PicklingTools: an
open-source collection of socket and file tools written
in C++ and Python. The PicklingTools were written
to address the complex nature of modern software’s
usage of multiple languages. This case study explores
how the PicklingTools have been a key component
in many operational systems by allowing disparate
portions (some pieces written in Python, some pieces

written in C++) of these heterogeneous systems to
communicate easily. Although the PicklingTools are
usable in multiple frameworks, they are framework
agnostic and can be used without being tied to any
monolithic framework.

For more discussion of considerations and alterna-
tives, see Related Work in section 7.

2. Overview

The PicklingTools allow C++ programs to commu-
nicate with Python programs via sockets or files and
vice-versa. When data is exchanged between C++ and
Python with the PicklingTools, the data is always a
Python dictionary (frequently just called a table). See
Figure 1.

A Python dictionary is a recursive, dynamic, key-
value data structure similiar to a Perl hash, or a C++
map. Keys, although they are usually strings, can be
any basic type. Values can be any typeincluding other
dictionaries. The values in the tables are accessed via
the keys: for example, iftable is the dictionary from
Figure 1, thentable["menu"]["id"] would have
the value of17 . Python dictionaries are the centerpiece
of the PicklingTools as they are thecurrency of all
communications.

The PicklingTools collection simplifies the process
of sending tables over sockets (UDP or TCP/IP) as well
as loading/saving them to files. Tables can be stored
or loaded in many different formats: either textual
(human readable like the example above) or binary.
When Python stores a table in a binary format, the table
is said to bepickled, thus the namePicklingTools.

There are other closely related exchange formats:
Javascript Object Notation (JSON)[2] (which is essen-
tially compatible with Python dictionaries) or XML[3].
Python dictionaries were chosen because of their com-
patibility with OpalTables (see below).



{
”menu ” : {

” i d ” : 1 7 ,
1 0 6 : ” F i l e ” ,
” popup ” : {

” menuitem ” : [
{” v a l u e ” : ” New” ,

” c l i c k ” : ” CreateDoc ( ) ”} ,
{” v a l u e ” : ” Open ” ,

” c l i c k ” : ” OpenDoc ( ) ” } ,
{” v a l u e ” : ” C lose ” ,

” c l i c k ” : ” CloseDoc ( ) ” }
]

}
}
}

Fig. 1. Example Python dictionary: The
currency of the PicklingTools

3. History

Rincon Research Corporation (RRC) builds Digital
Signal Processing applications (demodulation, cleaning
noise from signals, etc). RRC uses two frameworks to
build these applications: X-Midas (FORTRAN based)
and Midas 2k (C++ based).

Historically, X-Midas was abandoned in 1996 to
make way for Midas 2k. RRC moved forward, as did
other corporations, writing some very useful applica-
tions in the Midas 2k framework: GALACTUS and
EARTHBOUND to name a few (names have been
changed for company proprietary reasons). GALAC-
TUS was notable as it had (and still has) thousands of
installations.

In 2001, the Midas 2k development project was
cancelled. The customer directed a return to X-Midas.
The importance of legacy was felt. The problem was
that both X-Midas and Midas 2k were monolithic
frameworks: a user must use the entire environment
exclusively.

4. Legacy Systems

When Midas 2k was cancelled, a problem quickly
emerged: A large number of very useful applications
were already written in that framework. The customer,
with no future stake in Midas 2k, required that most of
the Midas 2k applications be rewritten in X-Midas.

{
menu = {

i d = 17 ,
”106 ” = ” F i l e ” ,
popup = {

menuitem = {
” 0 ” = { v a l u e =”New” ,

c l i c k =” CreateDoc ( ) ”} ,
” 1 ” = { v a l u e =”Open ” ,

c l i c k =”OpenDoc ( ) ”} ,
” 2 ” = { v a l u e =” C lose ” ,

c l i c k =” CloseDoc ( ) ”}
}

}
}

}

Fig. 2. Example OpalTable: The currency
of Midas 2k

4.1. GALACTUS

One of the more widely used applications, GALAC-
TUS, was written in Midas 2k. GALACTUS took full
advantage of features of M2k (threads, copy-on-write)
that were not available in X-Midas: this would make
porting problematic. More important was the legacy of
testing: GALACTUS was a complex application that
had been debugged in the field after thousands of hours
of work. GALACTUS was stable, well-tested, fast, and
did an important job. Rewriting it would have been
an insurmountable problem. GALACTUS was given an
exemption on rewrite.

GALACTUS is a server-based application. Clients
send requests to GALACTUS over a socket and receive
responses back over the same socket. Requests are
encoded using a proprietary Midas 2k data structure
called an OpalTable. AnOpalTable is a recursive,
dynamic, heterogeneous table, very much like Python
dictionaries or Perl hashes. See Figure 2.

The OpalTable format, although developed com-
pletely independently of JSON or Python dictionaries,
has remarkably similar syntax:= replaces the: and the
keys do not need as much quoting.

4.1.2. Currency of PicklingTools

One of the goals of the PicklingTools is to lower the
entry barrierof using GALACTUS for modern systems
written in a combination of Python and C++. X-Midas,
at that time, only supported flat data structures—no re-
cursive tables. For multiple reasons, Python dictionaries



were chosen as the currency of choice over OpalTables
and XML.

1) Support:The OpalTable is a stovepipe Midas 2k
construct—outside of Midas 2k, the OpalTable is
essentially unsupported. Python dictionaries and
XML have excellent support from their respective
communities.

2) Politics: OpalTables were untenable because they
implied Midas 2k usage (which was discouraged
by the customer).

3) Mind Share: The Python dictionary is a well-
understood standard used by many users. The
close correspondance to JSON further enhances
Python dictionary mindshare. XML has mind-
share, but has other issues (see below). OpalTa-
bles simply do not have mindshare.

4) Entry Barrier: Using Python dictionaries in
Python is very easy, as it is a built-in language
feature. XML has a non-trivial learning curve[2]
and OpalTable documentation is difficult to find.

5) Correspondence:Converting between OpalTa-
bles and Python dictionaries is trivial. XML
has issues because it does not support the key-
value correspondance as directly. XML also has
schema, interface, and simplicity issues. For more
discussion of choosing JSON vs XML, see [2].

4.1.3. The PicklingTools Solution

The PicklingTools were originally designed to allow
non-Midas 2k users to communicate with GALACTUS
without needing the Midas 2k framework.

At this time, X-Midas was being evolved to allow
Python to be used for scripting code and C++ for low-
level code. Given that these were the languages most
X-Midas programmers would be using, it was clear that
users of GALACTUS would want to be using C++ and
Python to send requests.

The center of communications in GALACTUS is a
component called theOpalDaemon. All client/server
socket interactions happen through this component.
There are two major problems with theOpalDaemon
from the perspective of non-Midas 2k users: The first
is that theOpalDaemononly understands Midas 2k
serialization (binary or textual OpalTables). The second
is that the socket protocol used byOpalDaemonis
unintuitive: A bug in the VMWare VMS TCP/IP stack
did not allow full duplex sockets—this “feature” keeps
X-Midas using something called dual socket mode.

To move forward, the PicklingTools would have to:

1) Augment OpalDaemonto understand different
formats.

2) Create easy-to-use clients in Python and C++ that
encapsulate the unintuitive socket protocol.

The low-risk choice was to allow theOpalDae-
mon to understand Python dictionaries. Python was
becoming the “scripting language of choice” for the
X-Midas community (as Python replaced the internally
developed scripting language) and there was an obvi-
ous correspondance between OpalTables and Python
dictionaries. Preserving backwards compatibility with
the original OpalDaemonwas still important: there
were still many applications written in Midas 2k and
these apps still had to communicate with GALACTUS
without modifications.

The first version of the PicklingTools initiated the
following:

1) GALACTUS replaced theOpalDaemoncom-
ponents with theOpalPythonDaemon. The first
version of theOpalPythonDaemonwas simply
the OpalDaemonaugmented to understand the
Python Pickling Protocol 0 as well as Midas 2k
serialization. To remain backwards compatible,
adaptive serialization was used to distinguish
between the two serializations.

2) C++ and Python users use theMidasTalker client
to communicate with GALACTUS.

With these changes, non-Midas 2k users are able to
communicate easily with GALACTUS via Python dic-
tionaries. See Figure 3.

4.1.4. Python

Python, out of the box, comes with all the tools
necessary to interface to GALACTUS, including:

1) Python dictionaries, a part of the language.
2) The socket library, a standard built-in (import

socket).
3) Native Python serialization, calledpickling, a

standard built-in (import cPickle).

The client, called theMidasTalker, is written in raw
Python and requires no other extensions. The most time
consuming chore was emulating the socket protocol
that the server uses, but even that was straight-forward.

An important aspect of theMidasTalker is that it is
written in raw Python—there are no dependencies on
any non-standard external libraries, in C or otherwise.
This means a user can write a Python client to talk to
GALACTUS without needing any special frameworks;
communicating with GALACTUS is as simple as an
import, an open, and a send. See Figure 4.



Server

OpalPythonDaemon

Client

MidasTalker

Client

MidasTalker

Client

MidasTalker

Client

MidasTalker

TCP/IP

TC
P/

IP

T
C

P
/IP

TCP/IP

R
ea

d
/W

ri
te

Rea
d/

W
rit

e

Read/Write

C++ Applications Legacy M2k Applications

Python Applications

C++ X-Midas Primitives

Raw C++ (no X-Midas)

Raw Python (no X-Midas) XMPY

OpalTables

Text Binary

Traditional View: Pickling 
Tools allows clients (X-
Midas and others) to talk to 
legacy applications.

                 KEY
Socket
Read/Write

Fig. 3. Traditional View of PicklingTools

from m i d a s t a l k e r import ∗
mt = MidasTa lker ( ” h o s t ” , 8 8 8 8 , SERIALIZEP0 , DUAL SOCKET)
mt . open ( )

r e q u e s t ={ ’REQUEST ’ : { ’ p ing ’ : 1 0 0 . 1} }
mt . send ( r e q u e s t )
r e s p o n s e = mt . recv ( 5 . 0 ) # 5 second t i m e o u t
i f r e s p o n s e [ ’STATUS ’ ] = = ’OKAY’ : done ( )

Fig. 4. Example usage of a MidasTalker in Python

4.1.5. C++

C++, out of the box, needs a few more tools to
interface with GALACTUS:

1) Python dictionaries are emulated through an
open-source library called OpenContainers[4], in-

cluded with the PicklingTools distribution.
2) The UNIX socket libraries come standard on

most distributions.
3) The Python Pickling modules had to be written

from scratch to emulate Python serialization.
They are included in the PicklingTools distro.



# i n c l u d e ” m i d a s t a l k e r . h ”
MidasTa lker mt ( ” h o s t ” , 8 8 8 8 , SERIALIZEP0 , DUAL SOCKET ) ;
mt . open ( ) ;

Val r e q u e s t = Tab ( ”{ ’REQUEST ’ : { ’ p ing ’ : 1 0 0 . 1} } ” ) ;
mt . send ( r e q u e s t ) ;
Val r e s p o n s e = mt . recv ( 5 . 0 ) ; / / 5 second t i m e o u t
i f ( r e s p o n s e [ ”STATUS” ]== ”OKAY” ) done ( ) ;

Fig. 5. Example usage of a MidasTalker from C++

The C++ libraries are more cumbersome than their
counterpart. It’s difficult to emulate Python dictionaries,
a dynamic construct, in a statically typed language
like C++, but the OpenContainers libraries allow C++
users to manipulate data structures that are similar
to Python dictionaries. Emulating the same semantics
as the Python Pickling Protocol 0 required reverse
engineering the Python serialization format. Although
the Boost libraries[5] were available at this time, it
wasn’t clear they contained the pickling code. See
Related Work for more discussion.

A minor goal of the PicklingTools is to make the
C++ experience similar to the Python experience. The
C++ MidasTalker looks and feels very much like its
Python counterpart: See Figure 5.

The original goals of the PicklingTools were satis-
fied. Any user could interface to GALACTUS easily
from Python or C++, without requiring X-Midas or
Midas 2k. By having a toolset that wasn’t bound to any
particular framework, users could easily move between
them.

4.1.6. Python Extension Modules in C
and Embedding Python

For Python, a common solution to the “How to
connect Python and C/C++” problem is to wrap the
C/C++ in a C extension module (i.e., wrap the C code
with some special code to be callable from Python).
Python can then easily call the needed functionality[6].
Another potential solution is to embed a Python in-
terepreter within a C program[6] so that the C/C++
program can call arbitrary Python code.

Why didn’t the PicklingTools consider these solu-
tions?

1) Linkage Issues Complicate Usage:C extension
modules for Python imply the user has to worry about
linking C code to their Python interpreter. Linking,
esp. with shared objects, is full of pitfalls in a diverse
environment: different OSes (Red Hat 9.0, Enterprise 3,

4 and 5), different compilers (GNU gcc 3.x, 4.x, Intel),
different models (32-bit and 64-bit), different versions
of Python on the same machine (2.2, 2.3, etc). Linking
issues plague installs when sharing (disks, code) tends
to cross machine-boundaries.

The client needs to beas simple as possibleto avoid
linkage issues: All PicklingTools Python code israw
Python to avoid any linkage issues. Even most of the
C++ PicklingTools code, especially OpenContainers,
is inline code so the user can just#include the
appropriate modules without having to link it (C++
and related tools supports inline code in.h files
well). Using this model, the user defaults to the link
environment of the surrounding application.

A major concern of the PicklingTools is to reduce
the entry barrier for modern applications: worrying
about linkage issues raises the entry barrier to talk to
legacy applications.

2) Libraries Are Low Risk Compared to Extend-
ing/Embedding Python:Inserting a few libraries into
the OpalPythonDaemonis low risk: they have a small
memory footprint and changes are isolated to one
component.

Converting all of GALACTUS to a C extension
module to be called by Python is problematic because
it is such a large task: the size of such an enormous
undertaking is inherently risky.

Embedding a Python interpreter is worrisome due
to of linkage issues. Most legacy Midas 2k applica-
tions use many threads (50-200): these threads tend
to be address-space hogs. The address space used by
a Python interpreter is non-trival and can “bloat” a
legacy application. GALACTUS is especially sensitive
to address-size bloat as it stresses the limits of a 32-bit
install.

To mitigate risk and keep the the entry barrier low
for the legacy applications under consideration, Python
extensions or embeddings do not make sense.



Server

OpalPythonDaemon

Server

MidasServer
(Raw C++ or 

X-Midas Prim)

C++ Systems M2k Systems

Python Systems

Text

Binary

Evolutionary View: 
Pickling Tools allows full 
interoperability between 
systems written in C++, 
Python, or Midas 2k.

Server

MidasServer
(Python or XMPY)

Client

MidasTalker
(Python or XMPY)

Text

Binary

Python 
Dictionaries

OpalTables

Read/Write Files 
from All Systems

Client

OpalPythonSocketMsg

Client

MidasTalker
(Raw C++ or 

X-Midas Prim)

                 KEY
Socket

Fig. 6. Evolutionary View of PicklingTools

5. Evolving Systems

GABRIEL was a new X-Midas application tasked to
replace an existing Midas 2k application. GALACTUS
was just one of the systems that GABRIEL needed
to communicate with. The developers of GABRIEL
decided to use the C++ portion of the PicklingTools
to talk to GALACTUS, but enjoyed the experience
so much that they adopted the toolset for the entire
application. The GABRIEL developers used Python
dictionaries as the currency of their system, sending
them through X-Midas pipes or writing them to files
on disk. This application heralded the way for other
X-Midas applications to use the PicklingTools.

Each new system using the PicklingTools evolved
the library, incrementally adding new features.

1) GABRIEL must communicate with a Midas 2k
system that still delivers textual OpalTables in
files. The PicklingTools was expanded so that

it could handle textual OpalTables from Python
and C++. In other words, a new serialization was
added.

2) SSURF was a X-Midas follow-on to the
GABRIEL system. SSURF was a more complex
system using PyQt GUI, GALACTUS, and an
assortment of XMPY (Python) and C++ pieces.
It was very clear that a system using lots of
MidasTalkers also neededMidasServers. Thus,
SSURF pushed the development of theMi-
dasServer in Python and C++. See Figure 6.

3) TERRAX is an X-Midas system that must com-
municate with a EARTHBOUND, a legacy sys-
tem written in Midas 2k. EARTHBOUND cannot
be replaced, modified, or changed in any way.
Simply speaking, it is untouchable because of
money and geography issues: it works and it
cannot afford to be rewritten. TERRAX, however,
must communicate with EARTHBOUND to get



Fig. 7. A setup of Arkham Horror: A complex table-top game with many components

the information it needs. To move TERRAX
forward, the PicklingTools was augmented to
handle:

a) UDP
b) M2k binary serialization

The PicklingTools framework delivers UDP
OpalTables from EARTHBOUND to X-Midas as
Python dictionaries so TERRAX can process the
information. Both C++ and Python can handle
UDP, although only C++ can handle M2k serial-
ization.

4) NOVA is an X-Midas system that talks to
GALACTUS. Unlike other systems, NOVA is
an incredibly high-volume system that stresses
GALACTUS to the limits. The default serializa-
tion between systems is Python Pickling Protocol
0: it is a protocol compatible with just about
all Python interpreters, but it is a slow ASCII
serialization protocol. To get NOVA the perfor-
mance it needed, the Python Pickling Protocol 2
(which comes standard with most modern Python
interpreters) was implemented: it handles binary
data faster with less overhead: 10x–100x faster.
In the end, NOVA used the slightly faster M2k
binary serialization (due to compatibility issues),
but it pushed the PicklingTools forward to be able
to handle Python Pickling Protocol 2.

The PicklingTools has quickly become very im-
portant in allowing new systems to be written in X-
Midas (using newer technologies in Python), while still
leveraging the legacy software.

6. New Applications

Although historically both X-Midas and Midas 2k
have been involved in every system using the Pickling-
Tools library, neither is required: all the tools can be
used from raw Python or raw C++. In this way, complex
applications made up of C++ and Python can be easily
built using Python dictionaries as the currency of the
system. See Figure 6: it gives the Evolutionary view of
the world.

6.1. Arkham Horror

In Spring 2008, the Software Engineering class from
the Department of Computer Science at the University
of Arizona used the PicklingTools to build a complex
game.

The game Arkham Horror is a complex table-top
board game. It has numerous complicated rules for play
and is time-consuming to set-up and take down. See
Figure 7. It also requires that everyone be at the table
to play. If the computer manages the board and the



Fig. 8. Sample Monster Card from Arkham Horror

{
’ Monster ’ : ’ The One Who Cannot Be Named ’ ,
’ A t t r i b u t e s ’ : [ ’ P h y s i c a l R e s i s t a n c e ’ , ’ Magica l R e s i s t a n c e ’ ] ,
’ Defense ’ : −3 ,
’ DoomTrack ’ : 1 4 ,
’ A t t ack ’ : { ’ W i l l ’ : + 2 , ’ Frequency ’ : [ ’ p e r t u r n ’ , −1] } ,
’ P i c t u r e ’ : ’ unnamed . jpg ’

}

Fig. 9. Sample (Simplified) Encoding of Monster Card from Figure 8

rules, the players are free to enjoy the game. Using
networking allows distant players the option to play.
Computerization makes the game more accessible.

The goal of the Software Engineering class was to
implement, as an entire class project, a computerized
version of Arkham Horror.

6.2. Game Architecture

The game consists of hundreds of cards, each of
which changes the rules slightly or asks the player to
face some minor challenge. There are also, at the time

of this writing, at least six expansion sets which add
new cards to the game. One architectural goal was to
make it easy to add the new cards to the game without
having to modify client or server code (see below).

The basic idea was to make a “Prolog-like” rules
system where all the cards of the games are encoded
as either XML or Python dictionaries, and the game
engine would process those, changing the rules dynam-
ically as the cards were drawn. For example, a sample
monster card for the game looks like Figure 8 and
might be encoded (simplified version) as in Figure 9.

The main reason the PicklingTools were used was



the desire for transparency in the architecture: all
cards had to be easily human-readable without needing
excessive tools. The developers would be continually
updating, evolving, reading, and manipulating hundreds
of cards. If the cards were stored as textual Python
dictionaries, then all forms of manipulation would be
easy: human reading/writing as well as Python/C++
manipulation. One back-end alternative was XML,
but XML is not particularly readable without special
tools[2][3]. XML also requires some external tools to
use from C++, Java, or Python[2][3][7]. Manipulating
Python dictionaries from Python is easy because they
are built-in to the language (the OpenContainers give
a similar experience, by design, in C++: See Related
Work).

The architecture for Arkham Horror was a Model-
View-Controller[8]. The main game engine, which
encodes the state of the game (where players are,
the health of each player, etc.), is implemented as a
PicklingTools server in C++ (as aMidasServer). Each
player playing the game is implemented as a client (a
MidasTalker) that talks to the server to obtain and
display the current state of the game. The original
clients were text-based, with a Java and/or Web GUI
to be put on top.

The PicklingTools library was used because it al-
lowed:

1) Easy socket communications [players talking to
game engine].

2) Easy data representation [Python dictionaries].
3) Easy manipulation of data [textual dictionaries

read from files].
4) Easy choice of languages [C++ or Python].

The Python dictionaries back-end made PicklingTools
viable and the simple-to-use socket manipulation made
the PicklingTools a clear choice.

During initial development, the goal was to use
Python as a prototyping language to flesh out the com-
munications between the the clients and the servers.
The final goal was to implement the engine in C++ so
it could have multiple concurrent threads, with a thread
for each player (Python has issues with true concurrent
threads because of the Global Interpreter Lock[7]).

Due to a miscalculation by the instructor, the skill-
level of the class with C++ and Python was much
less than expected. Nevertheless, the class was able to
pick up the PicklingTools and make progress. However,
since the class was primarily Java oriented and one
group was able to quickly develop an initial version
of the PicklingTools for Java, the class switched the
engine and graphical clients to Java. This demonstrated
that there is a need for the PicklingTools to further

evolve by adding support for Java. There are plans
to cleanup and fully incorporate the Java support in
a future release. The initial work in Python and C++
helped lay the foundation of the game, and the class
continued using the Java PicklingTools and Python
dictionaries as the currency for the game.

A full version of the game was not expected since it
was a single semester class. With this time constraint
in place, a rough version was developed.

There were overtures to Fantasy Flight Games (the
owner of the copyright for Arkham Horror) to coop-
erate and produce a real product. Unfortunately, the
version developed by the class was not far enough along
for them to be interested. Fantasy Flight maintains their
copyright (to the point of telling others to take materials
off of websites) so it’s improper to distribute the version
written by the class.

7. Related Work

A popular solution for mixing C++ and Python
are the Qt4[9][10] and PyQt[11][12] frameworks. Qt4
is a very complete and mature C++ framework with
an emphasis on GUIs, but it also offers support for
networking and serialization. XML is pervasive in the
Qt framework and tends to be the serialization of
choice: For example, the GUIs from Qt Designer are
stored in files as XML. Qt also offers a homegrown
binary serialization throughQDataStreams [10]. The
Python framework PyQt is produced directly from
the Qt C++ using SIP[13], a tool for automatically
generating Python bindings for C and C++ libraries.
The integration between PyQt and Qt is tight, as
the SIP produces simple wrappers to call the C++
from Python[14]. SIP produces those wrappers in an
automated way.

Qt is a viable solution, but licensing may play a role.
Certain editions of Qt are available under a commercial
license, but there is also an Open Source version.
Until recently (2006-2007), there were questions as to
whether the PyQt bindings were under GNU General
License (GPL) version 3 or GNU Lesser General Public
License (LGPL) (version 2.1). If you are willing to buy
the commercial version or are not worried about the
GPL, Qt might be a viable solution.

From a PicklingTools’ perspective, Qt was never
really an option. Qt was available, but the licensing
issues seemed problematic from a corporate level. More
importantly, Qt has historically been more of a GUI
toolkit, and it wasn’t clear when RRC was shopping
around (2001) that Qt was the right tool: It tends to be
a framework that you embrace completely rather than



piecemeal.
Another popular solution for mixing C++ and

Python are the Boost C++ libraries[5][15]. The Boost
libraries offer heterogenous containers (using theany
type[5]) like OpenContainers (using theVal type[4])—
this allows the C++ user to use “python-like” data
structures. TheBoost.Python libraries also offer
serialization libraries that are compatible with Python
Pickling. The Boost libraries are very general, but
slightly harder to use. The OpenContainers and Pick-
lingTools chooses the opposite tact: the design goal is
ease of use, at the price of generality. For example,
the Boost libraries can work with any C++ classes,
but require augmenting C++ classes with code and
annotations to support Pickling[15]. The PicklingTools,
on the other hand, give you a fixed set of datatypes (all
ints, floats, complexes, strings, None, tables, lists) but
make those easy to use and pickle[16].

A subgoal of the PicklingTools is to make the C++
experience with heterogeneous containers as pleasant
as the Python experience. The Boost containers are less
“Python-esque” than the OpenContainers and therefore
less desirable. The Boost Python libraries may have
been a reasonable option at the time, but they seemed
clumsy to use.

Another solution to mix C++ and Python easily is
to use tools like SIP[13] and SWIG[7] to wrap C/C++
code automatically, rather than write these bindings by
hand using [6]. This requires linking C/C++ code into
the Python interpreter, which (as discussed in section
4.1.6) can be problematic if you aren’t mindful of
linking issues.

A critical point to note was that the PicklingTools
evolved slowly over time (8 years). Each feature added
value incrementally and without much risk. It’s impor-
tant to understand that this one consideration explains
why much of the Related Work never made much sense
to explore extensively; embracing Qt/PyQt, Boost, or
SWIG at any step would have been a higher risk propo-
sition. When developing applications under severe time
pressures, the “small change/low risk” option is very
appealing.

8. Conclusion

The PicklingTools started life as a toolset to ease the
transition from a legacy system to more mainstream
toolsets. As it evolved, it grew into a full-fledged
standalone toolkit allowing users to write applications
from scratch.

The PicklingTools have been used to build and aug-
ment real systems (GALACTUS, GABRIEL, SSURF,

TERRAX, NOVA) that run continuously and have se-
vere time and memory constraints. By way of example:
SSURF is 378000 lines of Python/C++ code and uses
400+ quad-core machines. NOVA is 406000 lines of
Python/C++ code and uses 120+ quad-core machines.

The PicklingTools offers two major features over
other toolsets. First off, much of the value of the Pick-
lingTools has been supporting multiple serializations
(many flavors of binary and text) so that disparate
systems could talk. New systems were able to come on-
line because the PicklingTools were able to bridge the
gap. The other major feature is the ease of usage: The
PicklingTools went to great lengths to provide simple
and consistent interfaces between C++ and Python. The
ease of manipulation of Python dictionaries from both
Python and C++ has been critical to its adoption by
real-world projects.

The toolset continues to evolve and is frequently
updated (see the web site).

Thanks to Rincon Research Corporation for allowing
the PicklingTools to be open-sourced, and thanks to
the University of Arizona for allowing usage in the
Software Engineering class.

References

[1] B. O’Sullivan, Mercurial: The Definitive Guide. California:
O’Reilly Media, Inc, 2009.

[2] Miscellaneous,JavaScript Object Notaton. http://json.org,
2004.

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau, “Extensible markup language (xml) 1.0 (fourth
edition)-origin and goals,”World Wide Web Consortium.
http://www.w3.org/TR/2006/REC-xml-20060816/sec-origin-
goals. Retrieved on October 29 2006, 2006.

[4] R. T. Saunders,OpenContainers: A Portable, Thread-Neutral
Library. www.amalgama.us/oc.html, 2004.

[5] B. Karlsson,Beyond the C++ Standard Library: An Introduc-
tion to Boost. California: Addison-Wesley Professional, 2005.

[6] G. van Rossum and F. L. Drake,Extending and Embedding the
Python Interpreter, Release 2.3.4. python.org, May 2004.

[7] M. Lutz, Programming Python, Third Edition. California:
O’Reilly Media, Inc, 2006.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns. California: Addison Wesley, 1994.

[9] M. S. Jasmine Blanchette,C++ GUI Programming with Qt 4
(2nd Edition). Boston: Prentice Hall, 2008.

[10] T. (Nokia), “Qt online reference documentation,” 2009.
[11] M. Summerfield,Rapid GUI Programming with Python and

Qt: The Definitive Guide to PyQt Programming. California:
Prentice Hall, 2008.

[12] R. Computing, PyQt Whitepaper. riverbankcomput-
ing.co.uk/software/pyqt/whitepaper, 2009.

[13] ——, SIP Reference Guide. riverbankcomput-
ing.co.uk/software/sip/intro, 2009.

[14] ——, PyQt v4 - Python Bindings for Qt v4. riverbankcom-
puting.co.uk/static/Docs/PyWt4/pyqt4ref.html, 2009.

[15] D. Abrahams and R. W. Grosse-Kuntsleeve,Building Hybrid
Systems with Boost.Python. Dr. Dobbs Journal, July, 2003.

[16] R. T. Saunders, The Pickling Tools User Guide.
http://www.picklingtools.com/UsersGuide.txt, 2004-2009.


